
1 Vision

Agents take in user instructions and ground them as commands executed on machines. Recent
advancements in agents are driven by foundational models (LLMs) trained on internet-scale
data [1, 2]. These agents can take in naturalistic instructions such as language, drawings [3],
and examples [4], and output machine instructions for code generation [5, 6], robotics [7],
and creative tasks [8, 9]. With increasing labor costs and an aging demographic, agents are
projected to play a key role in our society [10] as human collaborators.

However, unlike humans who learn through interactions, LLM-based agents improve pri-
marily through reengineering [11] and larger datasets [12, 13]. Consequently, end-users strug-
gle to improve the capabilities of these agents through interaction [14], but must rely on
companies such as OpenAI to create the next version of GPT. Why is it so di�cult to create
agents that improve through interactions? I identify two challenges:

(1) Data Gap. Typical instruction datasets are text-only, lacking an embodied environ-
ment, specific tasks, and evaluation metrics to verify execution success.

(2) Theory Gap. Existing theories of human instruction are constrained to overly stilted
tasks and remain unproven in accounting for the complexity of modern interactive agents.

As a consequence of the lack of (1) data and (2) theory, we are left with training ever
larger models, with interaction as an “emergent property” [1, 15], rather than an objective.

My lab’s goal is building agents that learn from human interactions, with the
challenges of data and theory addressed as prerequisites. These challenges are made tractable
by the following trends: (a) The increasing ease of collecting human annotations via crowd-
source; (b) The increasing generalities of computational cognitive science in explaining human
data, and (c) the increasing commodification of (code generating) foundational models that
readily integrate multi-modal datasets. I center my research aims around these observations,
they are:

Aim1. Dataset Curation To establish “north star” human instruction datasets to
evaluate and build interactive agents 1.

Aim2. Cognitive Modeling To develop domain general, computational cognitive the-
ories of human communication that account for the curated datasets.

Aim3. Interactive Systems To build interactive agents instantiated with these cogni-
tive theories of human communication.

Together, these objectives will push AI systems beyond their current limitations of re-
lying on significant expert e↵orts to improve. Instead, they will grow organically from user
interactions, becoming capable collaborators within specific domains (Figure 1).

Figure 1: Aspirational example of building agents that learn from human interactions to
solve domain specific tasks. Rather than engineering two separate systems for architects and
mechanical engineers, the developers build only a core API for geometric processing and an
interactive agent, who learns domain-specific capabilities from interactions.

1that are enduring despite the advancement of LLM agents (e.g. GPT-x)
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2 Aims

Our goal is to discover general cognitive principles that underpins human communication and
use these insights to build interactive systems, rather than developing bespoke systems. To
this end, we propose the following interrelated aims: (1) curate datasets, (2) develop theories,
and (3) build interactive systems (Figure 2).

Aim 1: Dataset Curation Machine learning is driven by datasets, for instance, the
success of deep learning was spurred largely by ImageNet [16]. Yet, high-quality and large-
scale human instruction-following datasets are scarce. This lack results in a proliferation of
agents that seem impressive in demos but lack benchmarks to quantify their usefulness. we
intend to build instruction datasets with full specification of the underlying environment,
task, and clear evaluation metric for execution success, similar to the pioneer works of [17]
but at a larger scale. By controlling these parameters, we can (1) better model the situation
and tasks under which the instructions are given, and (2) provide a framework of automatic
evaluation of instruction following agents via execution. Overall, these datasets should expose
fundamental phenomena of human communication, rather than for build any specific agent.

Aim 2: Cognitive Modeling Existing cognitive models of human communication [18,
19] tends to focus on the communication of references (i.e. this object rather than that
one), rather than on instructions (i.e. to perform actions). This is partly due to the lack of
large-scale, well controlled datasets to develop these models on top of. With Aim1, we are
in a unique position to model the collected datasets using Bayesian models [20, 21, 22]. In
addition to fitting the data by giving probabilities, these models are also generative, making
it possible for sample these models to obtain instructions and action sequences, giving a
concrete mechanism for building instruction following agents. Overall, this aim will provide
a computational account of human instruction, and is applicable across multiple domains.

Aim 3: Interactive Systems Current methods for building agents are often short-lived
and bespoke, relying heavily on black-box, closed-source models. In contrast, we intend to
build systems around the theories developed in Aim2. Specifically, models of how humans
generate instructions can be used to guide synthetic data generation [23, 24], to ensure the
synthetic data (and consequently, the model trained on it) is “human-like”. These models can
also be used at inference time, by performing theory of mind reasoning on why a human give a
certain instructions, the agent has a high probability of inferring the user’s true intent [25, 26].
Overall, this aim will build and evaluate instruction following agents in realistic domains (e.g.
interactive CAD modeling), and make our work visible to the broader community.

Figure 2: The 3 aims: curating dataset, developing models, and building interactive systems.
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